首页> 外文OA文献 >Non-linear flexural vibrations of thin circular rings
【2h】

Non-linear flexural vibrations of thin circular rings

机译:薄圆环的非线性弯曲振动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The non-linear flexural vibrations of thin circular rings are analyzed by means of the appropriate "shallow shell" equations. These partial differential equations are reduced to non-linear ordinary differential equations by assuming vibration modes and applying Galerkin's procedure. Vibrations involving primarily a single bending mode are investigated for three distinct cases, and the results indicate that the basic features of the problem are exhibited by an inextensional analysis.This information is then applied to simplify the analysis of vibrations in which several modes participate. A study of "self-coupled" bending modes shows that the single mode solution is valid only for certain combinations of amplitude and frequency: when the single mode exceeds a "critical amplitude", its companion mode is parametrically excited and participates in the motion.The general inextensional case (involving an infinite number of modes) is examined for two important sets of forces, and possible solutions are shown to be the excitation of primarily one or two bending modes. Stability analyses of these solutions indicate that when certain restrictions are met, all other bending modes play only a minor part in the vibration.An experimental study of the problem was also conducted. Theory and experiment both indicate a non-linearity of the softening type, the presence of ultraharmonic responses, and the appearance of the companion mode. Measurements of the steady-state response are in good agreement with the calculated values, and the experimentally determined mode shapes agree with the form of the assumed deflection.The analytical and experimental results exhibit several features that are common to the non-linear vibration of axisymmetric systems in general and to circular cylindrical shells in particular.
机译:薄圆环的非线性挠曲振动通过适当的“浅壳”方程进行分析。通过假设振动模式并应用Galerkin程序,将这些偏微分方程简化为非线性常微分方程。对三种不同情况下的主要涉及单一弯曲模式的振动进行了研究,结果表明该问题的基本特征通过不扩展的分析得以展现,然后将该信息应用于简化了多个模式参与的振动的分析。对“自耦合”弯曲模式的研究表明,单模式解决方案仅对振幅和频率的某些组合有效:当单模式超过“临界振幅”时,其伴随模式会受到参数激励并参与运动。对于两个重要的力集,检查了一般的非拉伸情况(涉及无限多个模式),并且可能的解决方案显示为主要激发一个或两个弯曲模式。这些解决方案的稳定性分析表明,当满足某些限制条件时,所有其他弯曲模式仅在振动中起很小的作用。还对该问题进行了实验研究。理论和实验都表明了软化类型的非线性,超谐波响应的存在以及伴随模式的出现。稳态响应的测量值与计算值非常吻合,并且实验确定的模态形状与假定挠度的形式相符。分析和实验结果显示出轴对称非线性振动共有的几个特征系统通常,特别是圆柱壳。

著录项

  • 作者

    Evensen, David Arthur;

  • 作者单位
  • 年度 1964
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号